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ADDED MASS AND DAMPING FORCES ON
CIRCULAR CYLINDERS

INTRODUCTION

Dynamic analysis of offshore structures subjected to vortex-induced forces, wave-induced
forces, earthquakes, or other disturbances requires a knowledge of the fluid added mass and
damping forces on the structure. However, the available literature [1,2] contains scant data
on these forces, and recourse is usually made to potential flow theory for calculating the
added mass forces. The vibrational drag force, meanwhile, is frequently assumed to obey the
established drag coefficient-Reynolds number relationship for steady, uniform flow. As stated
in Ref. 3, however, the steady relationship "is often used indiscriminately for other flow con-
ditions. This is partly because nothing better is available."

This paper presents the results of a series of tests on the added mass and damping forces
on transversely oscillating circular cylinders. Empirical formulas for determining these forces
under rather general oscillation conditions are derived. They show that, at least for damping
forces, the classical approach is incorrect.

The first part of this paper reviews the mathematics required for interpreting the force
measurements. The second part describes the experimental technique. The third part dis-
cusses the data reduction methodology and the development of empirical formulas for added
mass and damping forces.

MATHEMATICAL FORMULATION

We wish to consider the fluid force per unit length Ff acting on a circular cylinder of
diameter d that is constrained to oscillate as x = x* cos ct. Here, x represents the displace-
ment of the cylinder normal to its axis and t denotes time. The amplitude and circular fre-
quency of the oscillation are given respectively by x* and co. For the constrained oscillation
case, the fluid force per unit length can, in general, be vectorized as

Ff( 3 , X) = -mf(x*, co)x - cf(x*, ci)X, (1)

where a dot denotes time differentiation. In Eq. (1), mf is termed the equivalent fluid added
mass, and cf is termed the equivalent fluid viscous damping.. The problem is to measure
these quantities and determine their functional dependence on x* and Co.

To this end, we adopt and approach taken by previous investigators [1,2] - studying
the damped, free oscillations of the cylinder. The free oscillation experiment, however, does
not match the constrained oscillation conditions for which mr(x*, Co) and cf(x*, Co) are

Manuscript submitted December 24, 1975.
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SKOP, RAMBERG, AND FERER

exactly defined. In consequence, inherent differences exist between the added mass and
damping values measured in the free oscillation test and those which would be correctly
measured in a constrained oscillation test. Prior researchers in this area have failed to recog-
nize these differences. To an extent, this invalidates the interpretations of their experiments.
We shall discuss the inherent differences and methods for minimizing them after considering
the free oscillation experiment.

Suppose we have performed a free oscillation test and have recorded the amplitude xi
and time of occurrence tj of each half-cycle peak displacement. Here, i = 0, 1, 2, . . . repre-
sents the half-cycle number, and we define to = 0. The data appear typically as in Fig. 1.
Note that in this figure a possible nonlinear behavior of the free oscillation is indicated, since
it is not known a priori that mf and Cf are constants over the motion. Thus, our analysis
of the data must not be based on preconceived notions of linearity or of particular non-
linearities.

0
0
CD

0 1 2 3 4 5 6 7
HALF-CYCLE NUMBER, i

8 9

0

_
10

Fig. 1 - Possible form of the data obtained from a
free oscillation test

As is known from the theory of nonlinear oscillations (see, for example, Minorsky [4]),
the response of a free nonlinear oscillator can be approximated by an equivalent linear oscil-
lator. In particular, the decay law for the free oscillation of the cylinder between the i and
i+j half-cycles can be approximated as

xi+jlxi = exp I - [(c + cf)/2 (m + mf)] (ti+j - ti) . (2a)

Similarly, the frequency wij+j, representing the motion between the i and i + j half-cycles,
can be approximated by
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Wi,+j = irjl(t,+j - t,) = .[k/(m + mf)] 1/2. (2b)

In these equations, m, c, and k denote, respectively, the mass, damping constant, and spring
constant, all per unit length of the spring-mounted circular cylinder and, ideally, as measured
in a vacuum. Again, mf and cf denote the equivalent fluid loadings to be determined.

The above equivalent linear approximation can be shown [4] to have accuracy of order
(dx/x)2 to any actual oscillation behavior. Since between the i and i + j half-cycles dx -
Xi - xj+j and, on the average, x - (xi + xi+j)12, we can define an error E1 associated with
the linear approximation to the actual oscillation behavior as

El = [(i - Xi+j)l(xi + Xi+j)] 2* (3)

This is one inherent error connected with a free oscillation experiment for determining the
equivalent fluid loadings. The effect of this error is reflected in the formulas

[mf(x*, W) - mfm(x, U)] Imfm(x, 73) El (4a)

[cf(x*, Cw) - Cfm(T, E35)] /Cfm(X, Cl) E1 , (4b)

where the subscript m refers to the measured value.

In writing Eqs. (4), we have also indicated a second inherent error connected with a free
oscillation experiment for determining the equivalent fluid loadings; namely, what values of
amplitude x and frequency W between the i and i + j half-cycles should be assigned to the
measured fluid loadings? We are free to choose these values, but there is no assurance that
the numbers we choose are the numbers x* and co with which the measured loadings should
correctly be associated.

To estimate this second inherent error, we assign the following values to x and X be-
tween the i and i + j half-cycles:

x = (xi + xi+j)/2 (5a)

X = [max (con n+) + min (nn+l)]/2, (5b)

where i < n < (i + i - 1), and wnn+1 is defined by Eq. (2b). Equation (5b) says simply that
we choose for M3 the average of the highest and lowest frequencied half-cycles in the range
i to i + j. Within this range, we also have limits on x* and X given by

Xi > x* > Xi+j (6a)

3
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and

max (wn n+l) > X > min (wn,n+ 1 ). (6b)

On calculating the percentage uncertainties between the assigned values and the possible cor-
rect values of the amplitude and frequency, we find from Eqs. (5) and (6) that

(x* - x)/ x < Ey = (xi - xi+j)/(xi + xi+i) (7a)

(- Z)/Z3 < E(J = [max(conn+l) - min(wnn+i)1/[max(conn+l) + min(con,n+i)]-

(7b)

Here, Et and Ez define the errors associated with our inherent inability to choose the cor-
rect values of amplitude x* and frequency co that should be assigned to the measured fluid
loadings.

Finally, solving Eqs. (2) yields expressions for mfm and cfm in terms of the free oscil-
lation data as

mfm(x, -i) = k[(ti+j - ti)17rj]2 _ m (8a)

Cf.m(, Z) = [2k(ti+ 1 - ti)I(7rj)2] Qn(xilxi+j) - c, (8b)

with x and c3 defined by Eqs. (5).

MINIMIZATION OF THE INHERENT ERRORS

The main purpose of the preceding section is to point out the inherent errors of using
a free oscillation experiment for determining the equivalent fluid loadings, which are strictly
defined only for constrained oscillation conditions. This section discusses the minimization
of these errors so that the results are as accurate as available data permit.

The inherent errors are those involved with nonlinearities E1 and with amplitude and
frequency definitions Ey and E,,. These errors are defined by Eqs. (3), (4), and (7). From
these equations, it is apparent that each of the errors is minimized by selecting from the
data only adjacent (that is, i and i+1) half-cycle peaks. This approach gives Ecu = 0, so that
there is no difference between the assigned and correct vibrational frequencies.

To simplify the notation, we denote by x0 and x1 , respectively, the amplitudes at the
beginning and end of the half-cycle and by r the duration of the half-cycle. The equivalent
fluid loadings obtained from the half-cycle data are then, from Eqs. (8),

4
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mfm(xY, co) = k(T/1r)2 - m

cfm(x, c) = (2k r/7r2 )Qn(xo/xl) - c,

where, from Eqs. (5),

X-= (xo + X1)/2

cX = 7Th-.

The remaining inherent half-cycle errors are defined by Eqs. (7) and (3) as

Ey = (x0 - xl)/(x0 + xl)

El = EX2'E=E

and we have, from Eqs. (4) and (7),

[mf (x, co) - mfm (X, /))] /mfm (x, co) t; E

[Cf(X co) - Cfm (X, co)] Cfm (X, co) 2E2

and

(x* -DI)EN--L EP E

DIMENSIONLESS PARAMETERS

Under the constrained oscillation conditions for which the equivalent fluid loadings are
strictly defined, the only free variables besides x*, co, and the cylinder diameter d are the
fluid density p and absolute viscosity p. From the method of indices, we know that these
five variables can be reduced to a set of two dimensionless parameters that specify the entire
system. We take these two numbers as the dimensionless amplitude a and vibratory Reynolds
number , defined by

a = x*/d

= cd2 14v,

(13a)

(1 3b)

where v = u/p is the kinematic viscosity.
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Using the customary definitions for the dimensionless parameters, we can further write

mf(x*, c) = (7r/4)pd 2 CM(U, j3) (14a)

and

Cf(X*, co) = 7rpV31 /2CV(c, ), (14b)

where CM and Cv are the equivalent added mass and viscous damping coefficients. We shall
henceforth concern ourselves with the determination of these coefficients. The inherent half-
cycle errors defined by Eqs. (12) remain the same for CM, CV, and oa with obvious notational
differences.

EXPERIMENTAL TECHNIQUE

A circular cylindrical rod of known length L, diameter d, and mass per unit length m
was supported in a heavy, rigid frame by four identical springs (Fig. 2). Two stops on the
frame were positioned by micrometer exactly two diameters above the stationary rod. The
rod was pulled up and held against the stops by elastic bands. On signal, the bands were
freed simultaeously by two electromechanical releases. Since both the springs and stops
were positioned symmetrically with respect to the center of the rod, its motion was purely
translatory. This motion was tracked by an electro-optical system (Physitech System Model
441) calibrated to produce an output voltage linearly proportional to the rod displacement
over the range ± 2.5 V. The output voltage was plotted vs time on a high-frequency-response
stripchart recorder (Sanborn Recording System Model 356).

Fig. 2 - The experimental setup
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These operations were performed first in air and then in water. The measurements
in air were used to calculate the damping constant c and spring constant k from Eqs. (8),
under the assumption that in air the fluid loadings were negligible. Care was taken in the
selection of springs to ensure that the oscillatory behavior in air was linear over the entire
displacement range. A summary of the 30 different combinations of L, d, m, c, and k
used in the test series is given in Table 1.

Table 1 - Summary of Experimental Combinations

7

Data L d f m I c k
Set (cm) (cm) (g/cm) (g/cm s) (g/cm s2)

1 137.01 0.79 3.81 0.126 3,351
2 121.77 0.79 3.79 0.066 920
3 106.81 0.79 3.78 0.079 1,072
4 91.57 0.79 3.78 0.084 1,290
5 76.20 0.79 3.76 0.088 1,501
6 76.20 0.79 3.76 0.219 6,823
7 76.20 0.79 3.76 0.459 14,844
8 76.20 0.79 3.76 0.410 38,191
9 76.20 0.79 3.76 4.753 51,299

10 152.40 1.27 9.93 0.359 4,913
11 137.31 1.27 9.92 0.345 5,361
12 122.07 1.27 9.92 0.259 6,110
13 106.83 1.27 9.95 0.394 6,962
14 91.59 1.27 10.00 0.376 8,317
15 76.35 1.27 9.98 0.552 9,968
16 76.35 1.27 9.98 0.971 15,737
17 76.35 1.27 9.98 1.064 43,025
18 152.55 1.91 21.87 1.758 8,786
19 137.08 1.91 21.89 1.593 9,814
20 124.38 1.91 21.44 1.923 10,727
21 109.14 1.91 21.38 2.162 12,381
22 93.83 1.91 21.31 2.288 14,350
23 78.59 1.91 21.20 2.406 17,251
24 78.59 1.91 21.20 2.816 43,628
25 152.55 2.54 38.87 2.021 23,101
26 137.31 2.54 38.90 2.590 25,314
27 121.92 2.54 38.92 6.041 28,278
28 106.60 2.54 38.93 7.301 32,239
29 91.36 2.54 38.94 7.749 37,667
30 75.97 2.54 38.98 9.490 45,040
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During the measurements in water, the minimum distance between the center of the
stationary rod and any surrounding surface was at least eight rod diameters. This rendered
surface effects negligible. In addition, the ratio of length to diameter of the rod was always
greater than 30, to preclude significant end effects. A typical stripchart recording of the
oscillatory behavior in water is shown in Fig. 3.

. : .. I.,,

...

Fig. 3 - Typical stripchart recording of the oscillatory motion in water.
The time scale is 25 mm/s, and the amplitude scale is from -2.5 V to
+2.5 V. This particular recording corresponds to data set 16.

DATA REDUCTION

For each data set, the half-cycle peak amplitudes xi and the half-cycle duration r were
measured from the stripchart recording of the oscillatory behavior in water. To within the
accuracy of the measurements (errors on the order of 1%), the half-cycle duration was found
to be constant for the particular data set. That is, the response frequency in water was
found to be independent of the amplitude of oscillation.

The values for the half-cycle peak amplitudes typically appeared as in Figs. 4a and 4b,
which show the measurements corresponding to data sets 1 and 16 of Table 1, respectively.
To put these decay results in a form useful for further calculations, the data were smoothed
by a least-squares curve fitting procedure. The fitting function was chosen as

Qnxi = B1 + B2e-i' - B3 i, (15a)

and the sum S of the weighted squares of the residuals to be minimized was

N-1

S = 3x? [Qnxi - (B1 + B2e'Yi - B3i)2, (15b)

i=O

where N was the number of half-cycle peak amplitudes measured. The weighting function
x? was included since it was the peak amplitudes and not their logarithms that were to be
fitted (see Deming [5] ). Other functions besides e11 i (in particular, 1/(1 + -yi)q) were used
in attempting to fit the nonlinear decay of Qnxi for small i. However, the sums of the
weighted, squared residuals obtained with these other functions were at least an order of
magnitude larger than the one obtained by using eiYi.

8
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HALF-CYCLE NUMBER

(a)

3C0

2.0

0

hi 1.0 +

0 09 -
0.6-

0.5 

' 0.4 -
h'i
-j

L)~ ~~~~~~b

)- 0.3 

I 0.

0.2

0 4 B 12 16 20 24 28 32 36 40 44 48
HALF-CYCLE NUMBER

(b)

Fig. 4 - Half-cycle peak amplitudes (in volts) vs half-
cycle number (a) for data set 1 and (b) for data set 16.
The experimentally measured amplitudes are denoted
by the + symbol. The solid line is the least-squares
curve fit to the data.
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Actually, the smoothing process occurred in two steps, since from the raw amplitude
data it was apparent that the stripchart recorder was not exactly zeroed. This is shown
clearly in Fig. 4b, where the even half-cycle amplitudes are consistently larger than the pre-
ceding odd half-cycle amplitudes, indicating a slightly positive zero offset. To correct for
the DC offset, the raw amplitude data were first fit by Eq. (15a). The average offsets Ae
and AO of the even and odd half-cycle amplitudes from the smoothed curve were then cal-
culated as

Ne -1

Ae E x2i - exp (B1 + B2e-2yi - 2Bai)j (16a)
e ei=O

and

No -1

AO No E {X(2 i+l) - exp [B1 + B2e'Y(2 i+l) - B3 (2i + 11 } (16b)

i=O

where Ne and No were the number of even and odd half-cycle peaks, respectively. The DC
offset was obtained from

DC = (Ae - AO)/2, (17)

and corrected even and odd half-cycle amplitudes xi were computed, respectively, as

X2i = x2i - DC; i = 0, 1,..., N, - 1 (18a)

X(2i+l) = X(2i+l) + DC; i = 0, 1, . ., No - 1. (18b)

The set of corrected half-cycle peak amplitudes were then refitted by Eq. (15a) to yield final
values for B 1 , B2 , B3 , and y. In Figs. (4a) and (4b), the resulting least-squares fit to the
amplitude data is shown by the solid line.

A summary of the reduced experimental data is given in Table 2. Listed for each data
set, cross-referenced to Table 1, are the number N of half-cycle peak amplitudes measured,
the calculated DC offset, the sum S of the weighted, squared residuals corresponding to the
final least-square values of B1 , B2, B3 , and zy, these values, and the frequency f in water.

EMPIRICAL FORMULAS FOR ADDED MASS AND VISCOUS DAMPING

From the information contained in Tables 1 and 2, plus the voltage scaling law, 1 V =
(2d/eB, +B2 ) diameters, the calculations of the fluid loadings mfmQ(-, c) and Cfm(-X, co) from
Eqs. (9) and, thence, of the added mass and viscous damping coefficients CM(a, /) and
Cv(a, O) from Eqs. (14) are straightforward. Since the frequency f in water is constant for
a particular data set, the vibrational Reynolds number / (Eq. (13b)) associated with the data

10
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Table 2 - Summary of Reduced Data

Data | DC Offset Qnxj = B1 + B 2 e 7 - B 3i (Eq. (15a))

Set N V B I B2 I B3 I ' .

0.132
0.196
0.213
0.212
0.216
0.205
0.184
0.183
0.189
0.193
0.207
0.179
0.207
0.234
0.199
0.251
0.186
0.170
0.179
0.198
0.208
0.211
0.209
0.223
0.266
0.257
0.253
0.238
0.250
0.226

I, . . . . .

set is itself constant. The added mass coefficient CM(ct, /) associated with the data set is
also constant and independent of the dimensionless vibrational amplitude at (Eq. (13a)).
For clarity, we will henceforward abbreviate CM(a, /) by CM(p).

The relationship between the viscous damping coefficient Cv(ct, /) and the dimensionless
amplitude ar is typically as in Figs. 5a and 5b, which show the calculated values of Cv(a, /3)
and ae corresponding to data sets 1 and 16, respectively. Also shown in the figures for the
upper data points are the inherent error bounds, obtained from Eqs. (12), on the calculated
values of Cv(cY, /3) and at.
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1

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

48
38
45
46
46
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48
48

-0.011
-0.002
0.041

-0.004
0.013
0.011

-0.002
0.007
0.014
0.049

-0.020
0.018
0.035
0.017
0.040
0.020
0.016
0.017
0.043
0.008
0.032
0.055
0.046
0.049
0.067
0.026
0.060
0.002

-0.019
0.024

0.096
0.091
0.064
0.024
0.026
0.039
0.040
0.026
0.018
0.058
0.022
0.021
0.054
0.066
0.062
0.029
0.038
0.027
0.032
0.024
0.034
0.072
0.048
0.095
0.118
0.123
0.152
0.150
0.181
0.202

-0.274
_0.233
-0.256
-0.238
-0.318
-0.200
-0.319
-0.280
-0.109
-0.254
-0.217
-0.230
-0.083
-0.434
-0.31.7
-0.174
-0.195
-0.185
-0.068
-0.151
-0.115
-0.234
-0.177
-0.095
-0.190
-0.079
-0.151
-0.212
-0.136
-0.112

1.243
1.186
1.187
1.168
1.234
1.111
1.232
1.182
1.035
1.147
1.131
1.164
1.026
1.346
1.213
1.084
1.091
1.099
0.973
1.061
1.030
1.142
1.064
0.967
1.059
0.947
1.026
1.104
1.031
1.000

0.0240
0.0384
0.0408
0.0396
0.0349
0.0284
0.0269
0.0239
0.0333
0.0255
0.0235
0.0233
0.0312
0.0262
0.0239
0.0261
0.0298
0.0218
0.0222
0.0210
0.0280
0.0230
0.0222
0.0232
0.0252
0.0248
0.0248
0.0205
0.0217
0.0233

4.40
2.32
2.50
2.69
2.97
6.37
9.40

15.07
17.00

3.33
3.48
3.75
3.98
4.29
4.75
5.99
9.83
3.01
3.17
3.37
3.60
3.90
4.27
6.83
3.65
3.85
4.07
4.33
4.69
5.15
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a

a

Fig. 5 - The calculated viscous damping coefficient
CV(a, /3) vs the dimensionless amplitude ot for (a)
data set 1 (f3 = 430) and (b) data set 16 (/3 = 1520).
The calculated points are indicated by the + symbol,
and the inherent bounds on these points are enclosed
by parentheses. The solid curve is the two-segment
straight-line fit to the calculated points.
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Each of these curves indicates that Cv(a, /3) remains nearly constant (with a value de-
pending on A) for a large range of low a and becomes linear with a as a becomes larger.
Separating these two kinds of behavior is a short transition region. For small a, the con-
stant behavior of CV is in accord with theoretical predictions [6] and related experimental
studies [1, 2]. Meanwhile, for larger a, the linear behavior of CV with a agrees with the
concept of velocity-squared damping. To show the latter point, suppose we had originally
written the fluid force per unit length Ff as

Ff(x, x) = - pd2CM (a, O3x - I12pdCD(a, Ox) I (19a)
4

instead of, as in Eqs. (1) and (14),

FfG(, x) = 4 pd2CM(', /3)x - 7rpv/1"2 Cv(ax, /3)&. (19b)

Then the relationship between CD and CV, based on equivalent energy dissipation per cycle,
is

CD(a, /) = (302/-1/2/16) [CV(a, :)/a]. (20)

Hence, for CV proportional to a, CD(&, /3) becomes a constant dependent on /3.

To develop useful engineering formulas for the viscous damping coefficient, the curve of
Cv(a, /) vs a for each data set is approximated by a two-segment straight-line fit

Cv(OU, ) = C1(/3) + 6 2 / 1/2 C2(/3)[a -aT(P)]( U[a -aT(P/)]* (21)

Here, U is the Heaviside unit step function defined by

(0 a<aUT,
U(a - UT)= (22)

(1 a > aT,

and C1, C2 , and UT are the fitting coefficients. These coefficients are determined as follows:

a. Since C1 (/3) represents the nearly constant part of the curve of Cv vs a, it is directly
related to that part of the amplitude decay curve given by Qnxi - B1 - B3i (see Eq. (15a)).
Hence, from Eqs. (9b) and (14b), C1(/) is calculated as

C1 (/) = [(2kr/7r 2 )B3 - C] /(7rpV/1 /2 ), (23)

with r and / defined, respectively, by Eqs. (lOb) and (13b) and with the required numerical
values for each data set given in Tables 1 and 2.

b. The transition value of a, aT(/, is defined as that value of a at which the nonlinear
damping effects begin to have significance. We take, as an indication of this value, the location

13
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of the minimum value of Cv(a, /)/a as determined by a parabolic interpolation through the
minimum calculated value of Cv(a, /)/a and its left and right neighboring values.

c. The nonlinear damping coefficient C2(0) is obtained from a least-squares straight-
line fit to the calculated values of Cv(a, /3) and a for which a > UT. Actually, this is an
interesting case, as is seen from Figs. 5, in which the dependent variable Cv(a, /) has far
less error associated with it than the independent variable a. For such a case, the appropriate
least-squares value of C2(/) from Eq. (21) is (see Deming [5] )

iZ wu[Cv(a, /) - C,(g2

C20() 3-r2 a__T (24a)

1/1/2 E wj[CV(o, /3) - C1(P)] [aU - aT(/3)]

a>' T

Here, wa is the weight associated with the calculated value of a. Since the relative error
in a is Ey, from Eq. (12c), we choose to weight a by its relative goodness. Thus, w. is taken
as

Wa = 1 - Ey. (24b)

In Figs. 5a and 5b, the two-segment straight-line fit to the Cv(a, /)-vs-a curve, obtained by
the above procedure, is shown by the solid line.

A summary of the added mass and viscous damping coefficients is given in Table 3,
which is ordered by increasing vibratory Reynolds number /. In addition to the associated
value of /3 listed for each data set, cross-referenced to Table 1, are the added mass coeffi-
cient CM(/) and the curve-fitting parameters C1(/), C2(0, and aT(/) for the viscous damping
coefficient Cv(a, /3).

From this table, one can see that, while certain trends with respect to / exist for the
coefficients CM, C1, C2, and UlT, the total variation in these coefficients over the range
230 </3 < 5220 is very small. Thus, these coefficients can be considered essentially con-
stant over the range of /3 obtained in the experimental program. Hence, as a final step in
developing empirical formulas for the added mass and viscous damping, the average values
of these coefficients are used, and we take CM, C1 , C2, and aT respectively as

CM(:) = 1.01 (25a)

C1(/) = 4.50 (25b)

C2 (/) = 1.68 (25c)

aT(P) = 0.40. (25d)

14
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Table 3 - Summary of Added Mass and
Viscous Damping Coefficientst

Data Cv(oa, /) = C1(/) + 16/31 /2 C2(/3)[a - aT(/)]t U[a - aT(/3) (Eq. (21))
Set,,

S X 10-3 |j CM(:) I Cl(/) C2(/) aT(/)
; ~ ~~~~~~~~ ;

2
3
4
5
1

6
10
11

7
12
13
14
15
8

16
9

18
19
20
21
22
23
17
25
26
24
27
28
29
30

0.23
0.25
0.26
0.29
0.43
0.62
0.84
0.88
0.92
0.95
1.01
1.09
1.20
1.48
1.52
1.67
1.72
1.82
1.93
2.06
2.23
2.45
2.49
3.70
3.90
3.91
4.12
4.39
4.75
5.22

1.10
1.15
1.50
1.12
1.17
1.02
1.02
1.02
1.01
0.86
0.93
1.14
0.96
1.02
0.89
1.50
0.94
0.99
0.87
0.98
0.90
0.97
1.03
1.00
0.86
0.87
0.85
0.91
0.88
0.80

3.12
3.44
3.61
3.17
2.65
3.65
3.78
3.56
4.03
3.70
5.15
4.61
4.16
4.74
4.88
4.23
3.59
4.01
3.51
5.32
4.23
4.30
7.75
7.40
7.10
6.21
5.66
3.92
4.58
4.92

1.83
1.98
2.00
2.00
1.27
1.66
1.64
1.72
1.65
1.52
1.59
2.37
1.77
1.57
1.97
1.44
1.31
1.24
1.43
1.49
1.64
1.52
1.54
2.02
1.73
1.48
1.80
1.82
1.79
1.54

0.37
0.37
0.38
0.35
0.34
0.40
0.38
0.40
0.34
0.38
0.44
0.32
0.36
0.37
0.43
0.37
0.39
0.46
0.43
0.43
0.39
0.43
0.40
0.45
0.50
0.48
0.45
0.41
0.45
0.44

tBased on the values p = 1.00 g/cm 3 and v = 0.01 cm 2 /s

DISCUSSION AND IMPLICATIONS

If we combine Eqs. (19b), (21), and (25), the empirical formula obtained in this report
for the fluid force per unit length on a harmonically oscillating circular cylinder in the param-
eter range a < 2.00 and 230 </3 < 5220 becomes

15
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Ffe(x, x%) = - 4 pd2(1.01)x

7rPV/1/2{4.50 + [16 / 1/2(1.68)(a - 0.40)1 U(a - 0.40)}&. (26)

Here, the subscript e means "empirical." This formula should be compared to the commonly
used expression of Eq. (19a) with CM = 1.00 and CD = 1.20, or

Ffs(3, x) = -4 pd2 (1 .00) - 1/2pd(1.20)xI xI, (27)

where the subscript s means "standard."

We see immediately from this comparison that little difference exists between the empir-
ically obtained and commonly used fluid inertial loadings. However, this is not true for the
fluid dampings. These experiments show that the commonly used expression for the fluid
damping is incorrect. This has important implications for the design of offshore structures.

To understand some of these implications, it is useful to compare the energy dissipated
per cycle as determined experimentally, De, to the energy dissipated per cycle as determined
by the commonly used expression for the fluid damping, D.. For the region of dimension-
less vibration amplitudes where the empirically determined damping is purely viscous, the
applicable dissipation ratio is found as

DelDs = 312(4.50) 1= 6.94/ag/31 2 , a < 0.40. (28)
16(1.20) a/3

1
/
2

Equation (28) implies that, for De/Ds < 1, the commonly used value for damping is larger
than the experimentally obtained value. This in turn implies, in a simple-minded sense and
neglecting all other conditions, that the structure is underdesigned (too much damping has
been assumed). Conversely, for DelDs > 1, the commonly used damping value is smaller
than the true value, and the structure is overdesigned (too little damping has been assumed).
In either case, using the incorrect expression is costly, since an underdesigned structure is
subject to failure and an overdesigned one is needlessly expensive.

In Fig. 6, contours of constant overdesign and underdesign (that is, contours of con-
stant DelDs) in the a - /3 plane are shown for the ranges of a and /3 in which Eq. (28) is
valid.

SUMMARY

A series of experiments has been performed to determine the fluid loadings on an oscil-
lating circular cylinder. The experiments encompassed ranges of dimensionless amplitude and
vibrational Reynolds number given respectively by a < 2.00 and 230 < / < 5220. An empir-
ical formula for the fluid loadings, valid within this range, is given by Eq. (26).
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Fig. 6 - Contours of constant overdesign or underdesign,
given by the ratio of energy dissipated per cycle as found
experimentally, De, to the energy dissipated per cycle as
calculated by the commonly used velocity-squared damp-
ing law, D,.

This equation shows that the inertial component of the fluid loading found in the ex-
periments is in agreement with the commonly used potential flow formula for the fluid in-
ertial loading. However, the fluid damping as experimentally ascertained differs significantly
from the commonly used velocity-squared damping. In particular, the experimental results
revealed that

a. For a < 0.40, the fluid damping is essentially viscous (linear),

b. For a > 0.40, the fluid damping contains both linear and velocity-squared com-
ponents.

The implications of using velocity-squared damping rather than the empirically derived
damping formula of Eq. (26) in the design of ocean structures were also examined. Depend-
ing on the values of a and /3, velocity-squared damping could produce an overdesigned or
underdesigned structure as compared to a structure produced by using experimentally deter-
mined damping values.

In conclusion, we recommend that the damping formula of Eq. (26) be used henceforth
for the design and analysis of circular cylindrical sections of ocean structures subjected to
dynamic excitations. We also recommend that additional experiments be conducted to en-
large the parameter range encompassed by Eq. (26). Finally, because of the significant dif-
ferences found here between the experimentally determined damping values and the commonly
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used velocity-squared damping values, we suggest that added mass and damping measurements
be undertaken for other cylindrical cross sections frequently used in ocean structures.
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